
1

Platform: Db2 for z/OS

Stop REBINDing!!!

Speaker: Terry Purcell
Company: IBM

2

• Or……Stop (Dynamically) PREPARE-ing!!!

Stop REBINDing!!!

3

• And if you’re NOT REBINDing……

Start REBINDing!!!

4

Agenda

• Why (and why not) REBIND?

• (Static) Plan management

• Dynamic Plan Stability

• (Other) Enhancements to minimize access path change

5

• Improved performance from new run time

• SPROCs disabled and puffing required when executing prior release packages

• Exposure to new query optimization and runtime enhancements

• New access path choices (where the biggest % improvements exist)

• Improved runtime adaptations and optimizations

• Staying current on runtime structures ensures you’re matching the testing Db2 development does

• Reduce exposure to problems with migrated packages from earlier releases

• INCORROUTs

• Thread abends

Why do we suggest REBINDing?

6

When (and how?) to REBIND

• Across migration

• REBIND with APREUSE is recommended immediately after migration

• REBIND avoids need to puff runtime structure (to new release format)

• APREUSE reduces risk of access path regression

• Immediately after migration is usually a time for “stability” to validate new release

• …..APREUSE “safety” comes at a cost…..

NOTE: APREUSE is a BIND/REBIND option which instructs the optimizer to reuse the prior access path

7

REBIND with/without APREUSE – V12 message

• Rebind without APREUSE to see full potential for CPU savings

• From Db2 12 - 15+ internal workloads measured

• Queries with new Access Paths consistently were the biggest winners

• Typical performance gains for new AP’s

• 10%-99% reduction in CPU and ET

• New access path and optimized runtime structures

• Typical performance gains with NO AP change

• 0%-20% reduction in CPU and ET

• Optimized runtime structures with existing access path

8

APREUSE – V11 message

• Db2 11 trade-off of APREUSE
• An example DB2 11 workload

measurement
• 34% with APREUSE(NONE)

• New access paths and optimized runtime
structures

• 10% if APREUSE was used

• Same access path but optimized runtime
structures

• 1.4% if no rebind

• Prior release runtime structures on new
release

-1.4%

-10%

-34%

NOTE: One workload comparison only – to demonstrate the differences (often as best case)

9

REBIND – Within a release
• Minimum recommendation

• One BIND/REBIND within a release (current release runtime structure and prep for next release)

• Across FLs

• No requirement for REBIND for access path changes

• After maintenance application

• REBIND (with APREUSE) may be recommended due to Db2 fixes

• After REORG/RUNSTATS

• REBIND (without APREUSE) not required unless current performance is unacceptable

• REBIND recommendation is based upon tolerance/ability to address any regressions

• Fallback via REBIND SWITCH

• Improving inputs to optimizer with targeted RUNSTATS

• Other tuning approaches
What is your willingness/ability?

10

Agenda

• Why (and why not) REBIND?

• (Static) Plan management

• Dynamic Plan Stability

• (Other) Enhancements to minimize access path change

11

Plan Management (also known as Access Path Stability)

• What are the problems DB2 is attempting to solve?

• For Static REBINDs at migration or after applying maintenance

• Recover from an access path regression (REBIND SWITCH)

• Beginning in DB2 9

• Allow REBINDs to attempt to preserve the prior access path (APREUSE)

• Beginning in DB2 10

• For Static BINDs after application changes

• Allow BINDs to attempt to preserve the prior access path

• Beginning in DB2 10

12

PLANMGMT
= BASIC

Current

Previous

Incoming
copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

Current

Previous

move

delete

move
move

Step 1

Step 2

Step 3

• BASIC is an available option
• But not recommended due to

ease of disposing of a valid prior
copy

13

REBIND … PLANMGMT(EXTENDED)
PLANMGMT
= EXTENDED
(Default &
Recommended)

Current

Previous

REBIND … SWITCH(ORIGINAL)

move

delete

Current

Previous

Original

move

clone

Incoming
copy

Original

clone if no
original
exists

delete

Step 1

Step 3Step 2

Step 4

Step 1

Step 2

Step 3

• Set ZPARM
PLANMGMT=EXTENDED (default)
• Keep that extra copy!
• If space is a concern, turn on

compression for SPT01
• COMPRESS_SPT01=YES

followed by a REORG

14

REBIND – Cleanup – Action Required!

• With PLANMGMT(EXTENDED)

• There is NO automated cleanup

• ORIGINAL copy may be OLD/STALE
• Db2 does NOT automatically replace the ORIGINAL. Only the PREVIOUS is replaced at each REBIND.

• Recommended to regularly cleanup ORIGINAL

• An “empty” ORIGINAL ensures that next REBIND will create a “new” ORIGINAL
• ALWAYS keep an up-to-date original

15

REBIND … PLANMGMT(EXTENDED)
PLANMGMT (EXTENDED)
Keeping a valid ORIGINAL

Current

Previous

Incoming
copy

Original

• Across migration (V11 to 12)
• What if you need to revert to the V11 runtime behavior?

• Is your “ORIGINAL” valid from V11?

• Is your ”PREVIOUS” from V11 (and valid)?
• Depending on number of times REBIND has occurred – may be V12

• Solution

• FREE old copies before migration (or before REBIND in new release)

• Within a release
• After n months of stability – may not need the prior release runtime

• But regularly FREEing old means next REBIND updates the ORIGINAL

16

REBIND – APREUSE ERROR vs WARN

• APREUSE(ERROR) is recommended when
• No tolerance for access path changes

• NOTE: This doesn’t mean NO change – runtime structure behavior can change for existing access path

• APREUSE(WARN) is recommended because
• ERROR is “all or nothing” – at package level

• Inability of one SQL to reuse a prior access path will fail the whole package

• WARN is “per SQL”
• Inability of an SQL to reuse the prior access path only affects that SQL

• ERROR must result in an “exact match” to succeed
• But not all optimizer choices are within APREUSE’s control

• An increase in MATCHCOLS for same index will fail APREUSE(ERROR)

• WARN can tolerate “some” small differences in access path
• Increase in MATCHCOLS for same index
• or multi-index with different order of the “same” indexes are acceptable

• NOTE: APREUSE may fail, but a new access path “could” still be the same as the old

17

Plan Management – V12 updates

• Free inactive package copies while package is allocated and in use

• Allow selective FREE of ORIGINAL or PREVIOUS or inactive ONLY

• APREUSE source
• Supports APREUSE of PREVIOUS or ORIGINAL in 1 step

• Disallows SWITCH to an INVALID copy

• AUTOBIND to use APREUSE(WARN)

• APAR PH15896 – only requires FL100

18

Agenda

• Why (and why not) REBIND?

• (Static) Plan management

• Dynamic Plan Stability

• (Other) Enhancements to minimize access path change

19

Dynamic SQL challenges

• Dynamic SQL are more susceptible to performance regressions
• Full prepare at every cache miss
• Full PREPARE at each member in a data sharing group
• May undergo optimization process several times a day
• Static SQL optimized at [RE]BIND time, reused until subsequent [RE]BIND

• Dynamic SQL exposed to changing optimization inputs
• Release migration
• System maintenance
• Database maintenance (RUNSTATS)
• System parameter changes

• Static SQL regression is only exposed at [RE]BIND
• At [RE]BIND, static regression risk can be mitigated with PLANMGMT and APREUSE

20

Dynamic plan stability (DPS) - how does it work?

• Provide “static SQL like” performance stability for repeating cached dynamic SQL
• Persist cached dynamic SQL structures into DB2 catalog
• Cache-miss -> locate and load cache from catalog structures

• Allow more stable, predictable performance across
• Exit/re-entry to statement cache
• System recycle
• Database maintenance (RUNSTATS)
• DB2 maintenance
• Function level activation
• Across members of data sharing group

• Potential significant CPU savings at “cache turnover” periods, due to reduced prepares

21

Stabilize cache structures to DB2 catalog (SYSDYNQRY) and load from there
• Executing a dynamic statement, no DPS

• Check cache
• Cache hit -> run cached copy
• Cache miss > full prepare

• Executing a dynamic statement with DPS:

• Check cache
• Cache hit -> run cached copy
• Cache miss -> SYSDYNQRY hit -> run SYSDYNQRY copy
• Cache miss > SYSDYNQRY miss > full prepare

SY
SD

YN
Q

R
Y

Dynamic plan stability (DPS) - how does it work?

22

Stabilize queries – Capture command

• Dynamic query capture command syntax
>>-START DYNQUERYCAPTURE STBLGRP(stabilization-group) ---------------------------->

>--+-THRESHOLD(integer-constant)-|-cache-snap-specification-|---------------><

|-STMTID--(integer-constant)--+

|-STMTTKN-(string-constant)---’

Cache snap specification

>>--+-----------------+------+------------------+----+--------------------+--><

| .-*-----. | | .-NO--. | | .-LOCAL-. |

'-CURSQLID(+-------+)-' '-MONITOR(-------)-‘ ‘-SCOPE(-+-------+-)-’

+-SQLID-+ +-YES-+ +-GROUP-+

23

Capture examples

1. Capture individual statement
-START DYNQUERYCAPTURE STBLGRP(APP1) STMTID(1253)

• Stabilize STMTID 1253 into catalog with stabilization group APP1

2. Snapshot capture
-START DYNQUERYCAPTURE STBLGRP(APP1) THRESHOLD(100) CURSQLID(APP1ID) MONITOR(NO)

• Capture statements with APP1ID CURSQLID, and number of executions >= 100

3. Capture with monitoring*
-STARTDYNQUERYCAPTURE STBLGRP(APP1) THRESHOLD(100) CURSQLID(APP1ID) MONITOR(YES)

• Same as #2, but continue to scan cache and apply threshold until monitor stopped.
• Performance impact of cache re-scan is negligible.

24

Remove stabilized queries from catalog

• Command to FREE STABILIZED DYNAMIC QUERY – reasons to FREE

• A query stabilized with an inefficient access path

• Query is no longer used
SELECT * FROM SYSIBM.SYSDYNQRY

WHERE LASTUSED < CURRENT DATE – 180 DAYS

• Desire for DB2 to consider a new access path

• No REBIND capability today

• Clear invalid queries

• NOTE: Invalidation similar to static SQL invalidation rules

25

Agenda

• Why (and why not) REBIND?

• (Static) Plan management

• Dynamic Plan Stability

• (Other) Enhancements to minimize access path change

26

Literal Replacement (or Statement Concentration)

• From V10 - Dynamic SQL with literals can now be re-used in the cache
• Literals replaced with &

• Similar to parameter markers but not the same

• Example:
• WHERE ACCOUNT_NUMBER = 123456

• This would be replaced by

• WHERE ACCOUNT_NUMBER = &

• Lookup Sequence
• Original SQL with literals is looked up in the cache

• If not found, literals are replaced and new SQL is looked up in the cache

• Can only match with SQL stored with same attribute, not parameter marker

• If not found, new SQL is prepared and stored in the cache

27

Statement Concentration

• Performance Expectation
• Significant opportunity to avoid PREPAREs for repeating SQL with literals

• Using parameter marker still provides best performance

• NOTE: Access path is not optimized for literals

• Neither are access paths based on parameter markers/host variables

• Need to use REOPT for that purpose

• Limitations
• LIKE predicates not supported

• Literal replacement queries cannot exploit opthints and cannot use EXPLAIN

• May disable ability to use Index On Expression (IOE) – SUBSTR(COL,4,3) → SUBSTR(COL,&,&)

• Bindtime pruning may be limited – WHERE 0=1 →WHERE & = &

28

Statement Concentration – Db2 12 Update

• Initially controlled by
• Application programmer – Option of PREPARE ATTRIBUTES clause (application SQL call)

• Client connection (ODBC/JDBC config options)

• Db2 12 adds [RE]BIND PACKAGE option (DBA control)

>>-[RE]BIND PACKAGE--->

>>-+----------------------------+----------------------------------->

| .-NO--. |

'-CONCENTRATESTMT(-+-----+-)-'

'-YES-'

• CONCENTRATESTMT:
• NO (default)

• Do not enable statement concentration. Literals in dynamic SQL are not replaced.

• YES

• Enable statement concentration. Literals in dynamic SQL are replaced by '&'.

29

RUNSTATS – Dynamic SQL invalidation Db2 12

• Db2 12 default is that RUNSTATS will NOT invalidate cache
• Behavior change compared to V11 – always invalidate cache

• Exceptions
• UPDATE NONE REPORT NO

• RESET ACCESS PATH

• RUNSTATS option to INVALIDATECACHE
• Default NO

• Goal/Reason
• Majority of RUNSTATS executions are simply to keep catalog data current

• And NOT to change access paths that have acceptable performance

• Which is the whole theme of this presentation

30

REBIND PHASE-IN – Db2 12 FL505

• New REBIND behavior
• To allow BIND/REBIND to complete without requiring quiesce (exclusive access) of

package

• Will create a new CURRENT (phase-in) and existing will be the “phase-out” copy

• Support for the following options:

• APREUSE(NONE/WARN/ERROR)

• & PLANMGMT(EXTENDED)

• & APREUSESOURCE(CURRENT)

• the package type is not for a trigger or SQL stored procedure or scalar SQL UDF

31

Summary

32

Stop REBINDing!

• Or more correctly – stop introducing new access paths
• Unless you are able to address any regressions

• Db2 provides many features to reduce the introduction of new access paths
• Providing stability and reliability in performance

• REBIND

• APREUSE - To gain the benefit of new runtime structures – with reduced risk of regression

• SWITCH - To revert to prior “good” performance

• REMINDER – Have a recent ORIGINAL!

• Phase-in (FL505) – new behavior to ensure REBINDs are less disruptive

• Dynamic Plan Stability

• Statement concentration

• RUNSTATS to avoid invalidation by default

33

Terry Purcell
IBM
tpurcel@us.ibm.com

