
Session code:

Table Space Odyssey

Pavel Sustr
IBM Toronto Lab

D10

May 2nd, 2018 9:20-10:20 Db2 for Linux, UNIX, and Windows

1

1

Agenda

• Basics: Naming and Layout Conventions

• Common Internals: Pages, Extents

• DMS Internals: Ranges, Stripes, SMPs, EMPs, and Object Table

• REBALANCE vs REDUCE

• Storage Groups

• Caching, Parallelism

• Migration

• Best Practices

2

Legacy: Stuff That Everyone Knows (Sorry, Eh! ☺)

• DMS
• CREATE TABLESPACE … MANAGED BY DATABASE USING …
• Data resides in pre-allocated space in file-based (or raw) containers
• Reclaimable storage (“new-style” DMS) or not (“old-style” DMS)

• SMS
• CREATE TABLESPACE … MANAGED BY SYSTEM USING …
• Data resides in a filesystem directory
• Each directory contains multiple files representing objects (table, indexes, etc…)
• Allocation happens on demand

3

Use of any of these architectures is not recommended. Automatic is the future.

3

Automatic Storage

• Common misconception: Automatic storage is not “yet another table
space type. Instead, it is the attribute of a table space, whose
underlying properties are loosely based on one of the architectures
previously known as DMS or SMS.

• “Automatic” means that Db2 will take care of the placement, naming,
allocation, and future growth of the table space automatically

• Automatic SMS is only supported with temporary table spaces

• Automatic (DMS for data, SMS for temps) is the only table space type
supported in IBM Db2 pureScale ® and Db2 with BLU Acceleration

4

Although not identical to the previous architectures, we will be using the terms “automatic DMS” and “automatic SMS” for simplicity.

4

Automatic DMS Layout Explained

5

$ db2 "create tablespace ts_01a"

DB20000I The SQL command completed successfully.

$ ls -l /home/psustr/psustr/NODE0000/TESTDB/T0000003/*

-rw------- 1 psustr pdxdb2 5242880 Aug 16 16:17 /home/psustr/psustr/NODE0000/TESTDB/T0000003/C0000000.LRG

Storage Path:
/home/psustr

Instance Name:
psustr

Node:
NODE0000

DB Name:
TESTDB

Container ID.Ext:
C0000000.LRG

Ts ID:
T0000003

5

Automatic DMS Naming Convention

• Catalogs:
<storage path>/<instance>/NODE####/<dbname>/T#######/C#######.CAT

• System Temporary Tablespaces:
<storage path>/<instance>/NODE####/<dbname>/T#######/C#######.TMP

• User Temporary Tablespaces:
<storage path>/<instance>/NODE####/<dbname>/T#######/C#######.UTM

• Regular Tablespaces:
<storage path>/<instance>/NODE####/<dbname>/T#######/C#######.USR

• Large Tablespaces:
<storage path>/<instance>/NODE####/<dbname>/T#######/C#######.LRG

6

6

Automatic SMS Layout Explained

7

$ db2 "create database testdb"

DB20000I The SQL command completed successfully.

> ls /home/psustr/psustr/NODE0000/TESTDB/T0000001/C0000000.TMP/*

/home/psustr/psustr/NODE0000/TESTDB/T0000001/C0000000.TMP/SQLTAG.NAM

Instance Name:
psustr

Storage Path:
/home/psustr

Node:
NODE0000

Ts ID:
T0000001

DB Name:
TESTDB

Tag +
containers

SMS Path:
C0000000.TMP

Probably the simplest example of how to get an automatic SMS table space. Another example would be creating a user temporary table space.
By default, the table space will be automatic SMS.

7

SMS Naming Convention

SQL00002.DAT

• In IBM Db2 pureScale®, “.MEMBERxxxx” is appended to SMS temps

• Each database object (table, index, …) resides in a separate file

• The file grows and shrinks on demand

• Mapping Object ID to the object name:
SELECT NAME FROM SYSIBM.SYSTABLES WHERE FID = :objectID and TID = :tablespaceID

8

Prefix:
SQL

Object ID:
00002

Object Type:
DAT

8

SMS Object Type Extensions

9

EXT MEANING

.DAT Data

.TDA Temporary Data

.DTR Reorg Temporary Data

.INX Index

.TIX Temporary Index

.IN1 Shadow Index

EXT MEANING

.LF Long Field (LF)

.TLF Temporary LF

.LFR Reorg Temporary LF

.LB Large Object (LOB)

.TLB Temporary LOB

.RLB Reorg Temporary LOB

.LBA Lob Allocation (LBA)

.TBA Temporary LBA

.RBA Reorg Temporary LBA

EXT MEANING

.BKM Block Map (BMP)

.TBM Temporary BMP

.BMR Reorg Temporary BMP

.XDA XML Storage (XDA)

.TXD Temporary XDA

.RXD Reorg Temporary XDA

.CDE Columnar Data Engine

.TCE Temporary CDE

9

Table Space Support in Current Releases

10

SMS DMS AS SMS AS DMS

Db2 10.5

(Deprecated)

(Deprecated)

Db2 11.1

(Deprecated)

(Deprecated)

IBM Db2 pureScale ®

SQL1419N

SQL1419N

• Deprecated for user permanent, but acceptable for catalog and temporary

• Automatic is the way to go

10

Unformatted Page (db2dart /DP)

11

$ db2dart test /dp /tsi 3 /ps 128 /np 1 /v n /rptn ts3.page128.rpt

0000 *3000D00F 00000000 0005002A 03000000* *0...............*

0010 *80000000 04000000 00000000 FFFFFFFF* *................*

0020 *71BC0500 00000000 881B4A98 53E5E40A* *q.........J.S...*

0030 *11009500 00000000 D100B600 00000000* *................*

0040 *00000000 9C0FB00B 640B540B 830AB209* *........d.T.....*

0050 *E1081008 3F076E06 9D05CC04 FB032A03* *......n.........*

0060 *59028801 B7000000 00000000 00000000* *Y...............*

0070 *00000000 00000000 00000000 00000000* *................*

<…skipping…>

00F0 *00000000 00000000 00000000 00D10001* *................*

0100 *00C90061 61616161 61616161 61616161* *...aaaaaaaaaaaaa*

0110 *61616161 61612020 20202020 20202020* *aaaaaa..........*

<…skipping…>

01D0 *0100C900 63636363 63636363 63636363* *....cccccccccccc*

01E0 *63636363 63632020 20202020 20202020* *cccccc..........*

Header: object/disk
page #, object type/ID,
ts ID, LSN, checksum…

Payload: the contents
depend on the page, in
this case we can see
unencrypted user data
such as ‘aaaaaaaaaa’,
‘ccccccccc’, …

In this example we are dumping page 128 from table space 3. The page exists, and it belongs to table T1 containing strings such as
‘aaaaaaaaaaaaa’, ‘cccccccccc’, etc… The database is not encrypted.

11

Formatted Page (db2dart /DD) 1/2

12

$ db2dart test /dd /tsi 3 /tn 'T1' /ps 0 /np 1 /v y /rptn ts3.t1.rpt

Page Data Offset = 48

Page Data Length = 4048

Page LSN = 000000000005BC71

Object Page Number = 0

Pool Page Number = 128

Object ID = 4

Object Type = Data Object

Data Page Header: Slot Count = 17 Total Free Space = 149

Slot 0: Record Type = Data Object Header Control Record

Slot 1: Record Type = Free Space Control Record

Slot 2: Record Type = Table Directory Record

Slot 3: Record Type = Table Description Record

Slot 4: Record Type = Table Data Record (FIXEDVAR) …etc

Header: see the previous
slide

Payload: in this example
the individual page
“slots” contain
metadata pertinent to a
regular data page

The same page as on the previous slide, except that it is formatted. The output has been truncated for easier reading. Note that /v (verbose)
switch. Without this, user data will NOT be formatted.

12

Formatted Page (db2dart /DD) 2/2

13

Slot 4:

Offset Location = 2691 (xA83)

Record Length = 209 (xD1)

Record Type = Table Data Record (FIXEDVAR) (PUNC)

Record Flags = 0

Fixed part length value = 201

Column 1:

Fixed offset: 0

Type is Fixed Length Character String

61616161 61616161 61616161 20202020 aaaaaaaaaaaa

Slot 5:

<...skipping...>

63636363 63636363 63636363 20202020 cccccccccccc

This is what the
formatted user data
looks like. Notice the
‘aaaaa…’ and ‘cccc…’
strings.

13

Page Consistency

• CBITs
• Basic method to detect partial writes, used in Db2 releases prior to 9.8
• A bit from each 512-byte page sector is set to the same value before writing the

page; the original value of the bit saved to reserved space in the page header
• All such bits verified upon reading the page
• Very fast, but not designed to detect problems “in the middle” of the page

• Checksums
• The default for all new pages starting with 9.8
• A full page checksum calculated using the Fletcher checksum
• While still fast, capable of detecting problems anywhere in the page

14

14

Extent

• Block of 2 – 256 pages (configurable)

• The smallest unit of allocation in a DMS table space

• In multi-container tablespaces, one extent is the number of pages
written to the container before moving on to the next container

15

DMS TABLE SPACE

Container 0

P0 P1 P2 P3

P12 P13 P14 P15

Container 1

P4 P5 P6 P7

Container 3

P8 P9 P10 P11

Extent 0

Extent 1 Extent 2

Extent 3

P = Page

15

The Simple Stuff – SMS Container

• Each database object type resides in its own file, e.g. SQL00002.DAT

• An SMS container only contains real data, i.e. no metadata pertinent to the
table space management (such as in the DMS case, see the next slides)

• Allocation and deallocation happens on demand, the container grows and
shrinks as soon as the owning object does

• MULTIPAGE_ALLOC (DB CFG, enabled by default) causes Db2 to pre-
allocate one extent at a time, otherwise it is one page

16

SQL00002.DAT

P0 P1 P2 P3 P4 P5 P6 P7 etc…

Extent 0 Extent 1

SQL00002.INX

P0 P1 P2 P3 etc…

Extent 0

16

DMS Internals: Stripe

• Contiguous block of extents
spanning distinct containers

• Used to spread I/O across
multiple containers

• Not to be confused with disk
stripes

• Example: 3 containers, 12
extents, 4 stripes

17

Before moving on to the DMS table space structure, some internals must be explained first.

17

DMS Internals: Range

• Contiguous range of stripes, all
of which contain the same set of
containers

• Range latch is used to ensure
consistency during online
backup and rebalancing:
• Backup/Rebalancer acquires the

range latch in exclusive (X) mode
• All other readers or writers get the

latch in shared (S) mode

18

18

DMS Internals: Map

• Text representation of ranges and extents

• User-viewable by GET SNAPSHOT FOR TABLESPACES ON <db>

• Also printed to Db2 diagnostic log during selected conditions (usually errors)

19

Range Stripe Stripe Max Max Start End Adj. Containers

Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 3 99 0 1 0 2 (0, 1)

[1] [0] 0 5 149 2 3 0 1 (0)

• This map represents the picture from the previous slide =>

• Extent size: 25

• Adj: offset used by rebalancing, 0 if rebalancing is not in
progress

There are four extents in the first range, and therefore the maximum extent number addressed in this range (Max Extent) is 3.Each extent has
25 pages and therefore there are 100 pages in the first range. Since page numbering also starts at 0, the maximum page numberaddressed in
this range (Max Page) is 99. The first stripe (Start Stripe) in this range is 0 and the last stripe (End Stripe) in the rangeis stripe 1. There are two
containers in this range and those are 0 and 1. The stripe offset is the first stripe in the stripe set, which in this case is 0 because there is only
one stripe set. The range adjustment (Adj.) is an offset used when data is being rebalanced in a table space. (A rebalance might occur when
space is added or dropped from a table space.) When a rebalance is not taking place, this is always 0.

There are two extents in the second range and because the maximum extent number addressed in the previous range is 3, the maximum
extent number addressed in this range is 5. There are 50 pages (2 extents * 25 pages) in the second range and because the maximum page
number addressed in the previous range is 99, the maximum page number addressed in this range is 149. This range starts at stripe 2 and ends
at stripe 3.

19

DMS Internals: SMP – Space Map Page

• Metadata page with object ID 65534 (0xFFFE) indicating which extents in
the associated table space are used/free/pending delete by using a simple
bitmap for the state of each mapped extent:
• 0 = Free, 1 = Used, 2 = Pending Delete, 3 = Used + Pending Delete

• No association with the actual object, i.e. an SMP does not “know” which
object owns the allocation (see EMP later in this presentation)

• A table space may contain multiple SMP extents
• The larger the table space, the more SMP extents exist

• SMP extents are at fixed locations in the table space => fast lookup
• The placement is a function of page size and extent size

20

20

DMS Internals: SMP Extent Locations – Example

4 K Page, Extent Size 2

21

SMP Pages SMP Extent

SMP# in Extent Location Pages Mapped Extents Mapped Size

---- ----------- ----------- ------------------- ----------------- ----------

0 0 - 1 2 0 - 31999 0 - 15999 131072000

1 2 - 3 32000 32000 - 63999 16000 - 31999 262144000

2 4 - 5 64000 64000 - 95999 32000 - 47999 393216000

3 6 - 7 96000 96000 - 127999 48000 - 63999 524288000

4 8 - 9 128000 128000 - 159999 64000 - 79999 655360000

5 10 - 11 160000 160000 - 191999 80000 - 95999 786432000

6 12 - 13 192000 192000 - 223999 96000 - 111999 917504000

7 14 - 15 224000 224000 - 255999 112000 - 127999 1048576000

<…etc…>

21

DMS Internals: Pending Delete Extents

• “Pending Delete” extents are created by removing extents from an owning
object (object truncation, reload, object drop, …)

• Such extents cannot be freed until the outcome of the extent removal
transaction is known (commit vs. rollback?), thus “pending delete”

• Once it is determined there are no in-flight operations against the given
SMP, existing or future transactions are allowed to free pending delete
extents, for example when searching for free space during new extent
allocation requests

Can also be freed manually by LIST TABLESPACE SHOW DETAIL

22

22

DMS Internals: SMP Contents – Time Lapse

• Table Space Empty

• Table created

• Data inserted

• Data deleted

• Table dropped

• Commit

• Extents freed

23

$ db2dart test /dp /tsi 3 /ps 32 /np 1 /v n

Page 32 of 32.

0000 *3000D00F 00000000 00050E2A 03000000* *0...............*

0010 *20000000 FEFF0000 00000000 FFFFFFFF* *................*

0020 *FB7D0600 00000000 35CE793D B8CB2309* *........5.y.....*

0030 *02000000 00000000 00000000 02000000* *................*

0040 *00000000 00000000 00000000 00000000* *................*

0050 *00000000 00000000 00000011 00000000* *................*

0060 *00000000 00000000 00000000 00000000* *................*

0070 *00000000 00000000 00000000 00000000* *................*

$ db2dart test /dp /tsi 3 /ps 32 /np 1 /v n

Page 32 of 32.

0000 *3000D00F 00000000 00050E2A 03000000* *0...............*

0010 *20000000 FEFF0000 00000000 FFFFFFFF* *................*

0020 *397E0600 00000000 87DE5CDF 810E2409* *9...............*

0030 *02000000 00000000 00000000 05000000* *................*

0040 *00000000 00000000 00000000 00000000* *................*

0050 *00000000 00000000 00101111 00000000* *................*

0060 *00000000 00000000 00000000 00000000* *................*

0070 *00000000 00000000 00000000 00000000* *................*

$ db2dart test /dp /tsi 3 /ps 32 /np 1 /v n

Page 32 of 32.

0000 *3000D00F 00000000 00050E2A 03000000* *0...............*

0010 *20000000 FEFF0000 00000000 FFFFFFFF* *................*

0020 *8E030700 00000000 F7429886 FE89F50A* *.........B......*

0030 *02000000 00000000 07000000 3A000000* *................*

0040 *00000000 00000000 00000000 00000000* *................*

0050 *00000000 00000000 11111111 11111111* *................*

0060 *11111111 11111111 11111111 11111111* *................*

0070 *11111111 00000011 00000000 00000000* *................*

$ db2dart test /dp /tsi 3 /ps 32 /np 1 /v n

Page 32 of 32.

0000 *3000D00F 00000000 00050E2A 03000000* *0...............*

0010 *20000000 FEFF0000 00000000 FFFFFFFF* *................*

0020 *8E030700 00000000 F7429886 FE89F50A* *.........B......*

0030 *02000000 00000000 07000000 3A000000* *................*

0040 *00000000 00000000 00000000 00000000* *................*

0050 *00000000 00000000 11111111 11111111* *................*

0060 *11111111 11111111 11111111 11111111* *................*

0070 *11111111 00000011 00000000 00000000* *................*

$ db2dart test /dp /tsi 3 /ps 32 /np 1 /v n

Page 32 of 32.

0000 *3000D00F 00000000 00050E2A 03000000* *0...............*

0010 *20000000 FEFF0000 00000000 FFFFFFFF* *................*

0020 *0B860700 00000000 21290007 CAA4980E* *................*

0030 *02000000 00000000 07000000 3A000000* *................*

0040 *E6850700 00000000 01000000 00000000* *................*

0050 *00000000 00000000 33331311 33333333* *........33..3333*

0060 *33333333 33333333 33333333 33333333* *3333333333333333*

0070 *33333333 00000033 00000000 00000000* *3333...3........*

$ db2dart test /dp /tsi 3 /ps 32 /np 1 /v n

Page 32 of 32.

0000 *3000D00F 00000000 00050E2A 03000000* *0...............*

0010 *20000000 FEFF0000 00000000 FFFFFFFF* *................*

0020 *00870700 00000000 3A5DE246 132C2409* *...........F....*

0030 *02000000 00000000 00000000 03000000* *................*

0040 *E6850700 00000000 00000000 00000000* *................*

0050 *00000000 00000000 00001011 00000000* *................*

0060 *00000000 00000000 00000000 00000000* *................*

0070 *00000000 00000000 00000000 00000000* *................*

• Deletion of data does not result in freeing extents
• E.g. object drop will mark the extents “pending delete”

Animated slide: 1 means Used, 3 is Pending Delete. This example is taken on a little-endian architecture, hence the bits are being set from the
least significant bit (right) to the most significant bit (left).

23

DMS Internals: EMP – Extent Map Page
• Unlike SMPs (per-table space), EMPs is a per-object map of extents

• An array of numbers which maps object relative pages to table space relative pages

• No fixed location, can be present almost anywhere in the table space

• The first EMP, a.k.a. “Extent Anchor”, is stored in the “Object Table” (see next slides)

• The map represented by EMPs can be best visualized by a tree (see next slides)

Discrepancy between SMP and EMP mappings can be serious:
• “Orphaned” extent
• extent marked as used in SMP, but not mapped by any object’s EMP
• CONCERNING, but can be fixed by db2dart

• Extent in use but marked free in SMP
• extents mapped by an object’s EMP, but marked as free in the SMP
• SERIOUS, must be resolved immediately (IBM Db2 Support, recovery, …)

24

Any “discrepancies” should be tested for while the database is offline. An attempt to run db2dart on a live database will likely result in false
positives.

24

DMS Internals: EMP “Tree”

25

Direct EMPs:
• directly pointing to data pages

Single indirect EMPs
• pointing to additional L1 EMPs
• L1 EMPs pointing to data pages

Double indirect EMPs
• pointing to additional L2 EMPs
• L2 EMPs pointing to L1 EMPs
• L1 EMPs pointing to data pages

There are 3 types of EMP extents: Level 0, 1, and 2.

All of the EMP pages in a level 0 type EMP extent, except for the last page, are direct EMP pages. This means that the entries on it point to
actual data extents for the table object. The last page is an indirect EMP page and the entries on this page point to other EMP extents. These
entries are broken down into two types: single indirect entries and double indirect entries. All of the entries in the last page, except for the last
16, are single indirect and the last 16 are double indirect. For example, if page size was 4 KB (which means 1000 entries oneach page) then
there would be 984 single indirect and 16 double indirect entries.

Single indirect entries point to level 1 type EMP extents. All of the EMP pages in a level 1 type EMP extent have direct entries pointing to data
extents.

Double indirect entries point to level 2 type EMP extents. All of the EMP pages in a level 2 EMP extent have indirect entries that point to level 1
type EMP extents.

25

DMS Internals: EMP Contents – Time Lapse
• Table T1 created

• Data inserted

• Data deleted

• Table truncated

• Index created

26

$ db2dart test /demp /tn T1 /tsi 3

DAT extent anchor: 96

Traversing extent map for object type: 0

Tablespace ID: 3, Tablespace Seed: 3, Object: 4 EMP page class: 64,

EMP pool page: 96, # entries: 1

Page LSN = 0000000000078B73

Pool relative page #'s :

128

<...skipping...>

INX extent anchor: 0

XDA extent anchor: 0

<…etc…>

• Deletion of data does not result in freeing extents
• Each object type (data, index, …) has its own anchor

$ db2dart test /demp /tn T1 /tsi 3

DAT extent anchor: 96

Traversing extent map for object type: 0

Tablespace ID: 3, Tablespace Seed: 3, Object: 4 EMP page class: 64,

EMP pool page: 96, # entries: 108

Page LSN = 000000000008985F

Pool relative page #'s :

128 160 192 224 256

288 320 352 384 416

448 480 512 544 576

608 640 672 704 736

<…etc…>

$ db2dart test /demp /tn T1 /tsi 3

DAT extent anchor: 96

Traversing extent map for object type: 0

Tablespace ID: 3, Tablespace Seed: 3, Object: 4 EMP page class: 64,

EMP pool page: 96, # entries: 1

Page LSN = 0000000000099AF5

Pool relative page #'s :

128

<...skipping...>

INX extent anchor: 0

XDA extent anchor: 0

<…etc…>

$ db2dart test /demp /tn T1 /tsi 3

DAT extent anchor: 96

Traversing extent map for object type: 0

Tablespace ID: 3, Tablespace Seed: 3, Object: 4 EMP page class: 64,

<...skipping...>

INX extent anchor: 160

Traversing extent map for object type: 1

Tablespace ID: 3, Tablespace Seed: 3, Object: 4 EMP page class: 65,

EMP pool page: 160, # entries: 1

Page LSN = 0000000000099B21

Pool relative page #'s :

192

Animated slide.

The first object relative page for table T1 is table space relative page 128, the second one at 160, the third one at 192 etc…

This sequence also reveals the extent size: 32

26

DMS Internals: Object Table

• A regular relational table, but invisible to the user

• Contains mapping between a given object and its “Extent Anchors”
• Extent Anchor – root EMP in the aforementioned tree, allowing to find the

“beginning” of extents of the given type (data, index, LOBs, … – see next slide)

• Object ID of the Object Table is 65535 (0xFFFF)

• The extent map for the object table consists of only one page, extent
0, table space page 1

• The first extent containing data for the object table is always extent 2

27

27

DMS Internals: Object Table – Example

28

$ db2dart test /dd /tsi 3 /oi 65535 /ps 0 /np 0 /v y

Object Table record:

Type: BASE Version: x00

Pool ObjID Extent Anchor Page 0 Obj State ObjType Life LSN

DATA 3 4 96 0 EXIST VALID 0000000000099AF8

BKM 3 4 0 0 NOT EXIST VALID 0000000000099AF8

INDEX 3 4 160 0 EXIST VALID 0000000000099B32

LONG 3 0 0 0 NOT EXIST VALID 0000000000000000

XDA 3 0 0 0 NOT EXIST VALID 0000000000000000

LOB 3 0 0 0 NOT EXIST VALID 0000000000000000

LOBA 3 0 0 0 NOT EXIST VALID 0000000000000000

• Data Extent Anchor at page 96, Index Extent Anchor at page 160 of the table
space (see the previous slide)

28

Finally, the Big Picture! DMS Layout

29

This is a logical map of a DMS table space. Page 0 (marked here as “Header”) does not actually start at physical offset 0. The first extent
(residing at physical offset 0) is used by the table space tag, see the Backup Slides section.

Within the table space address map, there are two types of map pages: extent map pages (EMP) and space map pages.

The object table is an internal relational table that maps an object identifier to the location of the first EMP extent in the table. This EMP
extent, directly or indirectly, maps out all extents in the object. Each EMP contains an array of entries. Each entry maps anobject-relative
extent number to a table space-relative page number where the object extent is located. Direct EMP entries directly map object-relative
addresses to table space-relative addresses. The last EMP page in the first EMP extent contains indirect entries. Indirect EMP entries map to
EMP pages which then map to object pages. The last 16 entries in the last EMP page in the first EMP extent contain double-indirect entries.

The extents from the logical table space address map are striped in round-robin order across the containers associated with the table space.

29

What Happens during Disk Page Read?

30

3. Search the Object Table to locate the first EMP extent
for the given object ID (say, Table A)

2. For the table space identified by the pool ID, find the
Object Table EMP to locate the Object Table

1. A read page request arrives (table space ID, object ID,
object type, object-relative page number)

5. Use the pool-relative page number to locate the
container and offset to read the extent into the buffer
pool (unless not inlined LOB/LONG)

SMP Extent

EMP Extent of Table A

OT EMP

EMP Extent of Table B

Data Extent of Table A

Data Extent of Table B

Object Table

4. Traverse the EMP extents of Table A to locate the given
object-relative page number and its translation to the
pool-relative page number

30

What Happens during CREATE TABLE?

31

SMP Extent

EMP Extent of Table A

OT EMP

Data Extent of Table A

Object Table

EMP Extent of Table B

Data Extent of Table B

1. Insert a new row into the Object Table and
obtain TID (object ID) and FID (table space ID)

2. Allocate an EMP extent by looking at the SMP
for free space and marking the extent used

3. Allocate a data extent and update the EMP
extent with the pool page number

4. If all is well, update the object table with the
extent anchor and page 0 for the newly created
table

31

High Water Mark

• The last allocated extent in a DMS table space

• Unlike with water, there may be “holes” under
the HWM, i.e. the allocations may not (and
usually are not) contiguous

• The table space cannot be reduced in size
unless the object holding the HWM is moved
(or dropped)

• The documentation claims that “Practically
speaking, it's virtually impossible to determine
the high water mark yourself”… we beg to
differ! (next slide ☺)

32

32

Displaying the High Water Mark

33

$ db2dart test /dhwm

High water mark: 538 pages, 269 extents (extents #0 - 268)

[0000] 65534 0x0e [0001] 65534 0x0e [0002] 65535 0x00 [0003] == EMPTY ==

[0004] == EMPTY == [0005] == EMPTY == [0006] == EMPTY == [0007] == EMPTY ==

<...skipping...>

[0132] == EMPTY == [0133] == EMPTY == [0134] == EMPTY == [0135] == EMPTY ==

[0136] 5 0x40* [0137] 5 0x00* [0138] 5 0x43* [0139] 5 0x03*

[0140] 5 0x44* [0141] 5 0x04* [0142] 5 0x00 [0143] 5 0x00

[0144] 5 0x00 [0145] 5 0x00 [0146] 5 0x00 [0147] 5 0x00

<...skipping...>

[0268] 5 0x00

Object holding high water mark:

Object ID: 5

Type: Table Data Extent

Extent Number

Object ID

Object Type

33

REBALANCE vs. REDUCE – Do Not Confuse! 1/2

• Both REBALANCE and REDUCE are about moving extents from one
place to another, but they are fundamentally different

• REBALANCE happens when a table space container is added or
removed, and the user issues ALTER TABLESPACE … REBALANCE in an
effort to spread the data evenly across the available containers
• The only thing that changes is the table space map and data physical location
• Page metadata (e.g. disk page number) remains unchanged
• Forward rebalancing = containers added, reverse = containers removed
• The operation is fully online, although impact on running workload may be easily

noticeable (could be a “heavy” impact operation)

34

Rebalance is not logged. Once started, the table space state will not go back to normal unless the operationhas completed. However,
rebalance can be suspended (ALTER TABLESPACE … REBALANCE SUSPEND) and resumed (ALTER TABLESPACE … REBALANCE RESUME).
Rebalance is not available in IBM Db2 pureScale ® as of now.

34

REBALANCE vs. REDUCE – Do Not Confuse! 2/2

• REDUCE (a.k.a. “Extent Reclaim”) is triggered by the user issuing
ALTER TABLESPACE … REDUCE in an effort to reduce the high water
mark for the table space
• Supported with reclaimable storage DMS table spaces (created in 9.7 or newer)
• One extent reclaim per table space, one mover thread EDU per extent reclaim
• Performance not critical, usually negligible impact
• Incompatible with operations such as backup, load, and others; extent reclaim

will yield to other operations and pause automatically
• Page metadata changes – the page is physically moved to a different location in

the table space
• The table space map remains unchanged

35

Unlike rebalance, reduce is logged. The operation can be stopped and terminated at anytime. Reduce is not available in IBM Db2 pureScale ®
as of now.

35

REBALANCE Example

36

C0 C1

Two storage paths
and a table space
has a container on

each

New storage
paths not used

by the table
space

immediately

C1

p1 p2 p1 p2 p3 p4

ALTER STOGROUP …

ADD p3, p4

REBALANCE causes to
create equally-sized

containers in new paths,
and redistribute extents

to them

p1 p2 p3 p4

ALTER TABLESPACE ...

REBALANCE

C0 C1 C2 C3

If table space is not
growing rapidly,

consider REDUCEing it
to make space available
for other table spaces

p1 p2 p3 p4

C0 C1 C2 C3

ALTER TABLESPACE ...

REDUCE

(optional)

C0

Used Space

Used Space

36

REDUCE Example 1/2

37

DROP TABLE 2
DROP TABLE 3

Internal table space metadata extents
Table 1
Table 2
Table 3
Extent that is allocated to a table space, but not to a table

ALTER
TABLESPACE …
REDUCE MAX

37

REDUCE Example 2/2

38

• Live extents are moved to occupy
unused extents lower in the table
space

• Once there is free space at the end
of the table space, the table space
can be reduced in size, and the free
space can be released back to the
file system

• The principle is similar to that of a
file system defragmentation

38

Storage Groups/Paths

• Storage Group
• A named group of storage paths
• CREATE STOGROUP sg ON '/path1', '/path2'
• Often used to manage multi-temperature storage
• Each group typically represents a different class of disk storage
• At least one default group, IBMSTOGROUP, exists in an AS-enabled database

• Storage Path
• A filesystem path, a member of a storage group
• ALTER STOGROUP IBMSTOGROUP ADD '/path3'
• The ALTER DATABASE … ADD STORAGE statement has been deprecated

39

39

Storage Path ADD, DROP, and REBALANCE Example

40

First
stripe

set

Existing
Paths

Paths Being
Added

C0 C1

Path Being
Dropped

C0 C2 C3

/path1 /path2 /path3 /path1 /path3 /path4/path4

A two-pass rebalance
will be done in this case:

1) Rebalance moving
space across the new
paths (forward)

2) Rebalance moving
space off of the path
being dropped
(reverse)

• Newly added paths will not be “In Use” unless REBALANCE has been performed

• Likewise, the existing path to be dropped will be in “Drop Pending” unless REBALANCE has been performed

40

Automatic Table Space Growth

41

C0 C1

Two storage
paths and a

table space has
a container on

each

ALTER
STOGROUP
ADD p3, p4

New storage
paths not

used by the
table space

immediately

TS
grows

p1 and p2
become full

C0 C1

p1 p2 p1 p2

C0 C1

p1 p2p3 p4 p3 p4

TS
grows

DB2
automatically
creates a new
stripe set on

p3 and p4

C0 C1

p1 p2 p3 p4

C2 C3

41

Filesystem Caching

1. Direct I/O (DIO): data is transferred directly from/to the disk
without going through the filesystem cache

2. Concurrent I/O (CIO): similar to DIO, but avoids inode locking
• The inode lock is used to control write serialization. Bypassing the inode lock

means that the application must be designed to handle serialization in its own
way. Db2 supports both DIO and CIO.

• Usually provides raw-like performance

3. Write-thru: regardless of caching configuration, ensures the data
has hit the disk; critical for recovery from outages

42

42

Caching in Db2

• Controlled by ALTER TABLESPACE … [NO] FILE SYSTEM CACHING

• Since 9.5, the default has been NO FILE SYSTEM CACHING except for
• AIX JFS
• Linux for System z®
• All SMS temporary table space files
• LOB/LONG data files in SMS permanent table space files

• Caching usually results in improved read performance, especially in
data warehouses systems with an under-configured extent size

• On the other hand, caching may slow down write performance

43

See Best Practices at the end of this presentation for some additional thoughts

43

Parallelism and Prefetch Size Calculations

a) For DMS, the initial parallelism is the largest number of containers in a
stripe set. For SMS, it is the number of containers for that table space.

b) Parse DB2_PARALLEL_IO. The default is "6" in pureScale®, or undefined in
all other cases. Use this value as “num_disks_per_container” below.

c) If the prefetch size is automatic, calculate the prefetch size:
prefetch_size = num_containers * extent_size [* num_disks_per_container] <= if defined

d) If DB2_PARALLEL_IO is set, prevent the parallelism from underflowing to
zero (may happen if the prefetch size is not automatic) :
parallelism = (prefetch_size + extent_size - 1) / extent_size
if parallelism == 0 then parallelism = 1

e) If DB2_PARALLEL_IO is unset, use the parallelism calculated in step a)
44

Table space parallelism is utilized by many areas, for example prefetching, index scans, LOB I/O, backup, and others. The algorithm may change
without notice.

44

Migration to Automatic Storage 1/3

• Method 1: Table Space Alter
• ALTER TABLESPACE … MANAGED BY AUTOMATIC STORAGE followed by

ALTER TABLESPACE … REBALANCE
• Works with DMS table spaces only
• Fully online

• Method 2: Redirected Restore
• SET TABLESPACE CONTAINERS … USING AUTOMATIC STORAGE followed by

ALTER TABLESPACE … MANAGED BY AUTOMATIC STORAGE after a connect
• Works with DMS table spaces only
• Can also be used to convert from raw to filesystem-based containers

45

Method 2: The ALTER TABLESPACE command is required in order to update the system catalog with the new table space type.

45

Migration to Automatic Storage 2/3

• Method 3: Schema Transport
• RESTORE … TRANSPORT INTO
• Useful when converting SMS catalog table space to automatic DMS
• http://www-01.ibm.com/support/docview.wss?uid=swg21984655

• Method 4: Data Unload
• Unload data, create a new automatic table space, reload with data
• Works with any table space type
• db2move, ADMIN_MOVE_TABLE, db2look/EXPORT/LOAD, load from cursor
• Requires manual work

46

46

Migration to Automatic Storage 3/3

• Method 5: Enterprise Migration Tool
• IBM has a tool called XenoBridge
• High performance unload/load designed for enterprise systems
• In-built data integrity checks
• Near-zero downtime using replication technology
• Can also be used in endian and character set conversions

• Further Reading
• Upgrading to the Db2 pureScale® Feature (see Appendix A-D)

47

47

Best Practices 1/3

• Use dedicated storage
• Especially separate the transaction logs from table space data

• Do not bother with raw devices

• Create your filesystems uniformly
• Same size, …

• Spread your table spaces evenly across all available file systems

• Use DB2_PARALLEL_IO to give a hint on the number of disks per path

• Set the extent size to a multiple of the RAID stripe size

48

• Strip – the amount of contiguous data on one RAID disk, for example 64 KB

• Stripe – the sum of all stripes, for example 64 KB * 4 RAID disks = 256 KB

• Assuming a 16 KB page size, a good extent size in our case is for example 32 (32 * 16 = 512 KB = 2 * 256 KB stripe)

48

Best Practices 2/3

• Use automatic storage for user data
• Avoid old-style SMS for permanent table spaces

• Use automatic storage for temporary data
• DMS is not prohibited (although not recommended), but may cause surprises:

• For example, when using HADR with the Read on Standby feature. Queries at
Standby might generate unique sorts, which may result in different DMS
temporary table space sizes on Primary vs. Standby. Surprising?

• Migrate old-style SMS or DMS created before 9.7 (non-reclaimable)
to reclaimable storage automatic DMS

49

49

Best Practices 3/3

• Plan non-critical operations such as REBALANCE or REDUCE for a low
traffic or maintenance window

• LOB/LONG data is not cached in buffer pools (except when inlined):
• Put LOB/LONG data to dedicated table spaces
• Enable filesystem caching for table spaces with LOB/LONG data

• XML data is cached in buffer pools
• Larger XML documents will be split into smaller page-sized pieces
• Use a larger page size (32 KB) to create as few pieces as possible
• Use a separate table space for XML data (CREATE … LONG IN … works with XML)
• Use compression when possible

50

50

BACKUP SLIDES

51

51

Old DMS Layout Explained (Not Recommended, FYI Only)

52

$ db2 "create tablespace testts managed by database using (file 'file1' 1M, file 'file2' 1M)"

DB20000I The SQL command completed successfully.

$ ls -l /home/psustr/psustr/NODE0000/SQL00001/file*

-rw------- 1 psustr pdxdb2 1048576 Aug 16 18:46 /home/psustr/psustr/NODE0000/SQL00001/file1

-rw------- 1 psustr pdxdb2 1048576 Aug 16 18:46 /home/psustr/psustr/NODE0000/SQL00001/file2

Storage Path:
/home/psustr

Instance Name:
psustr

Node:
NODE0000

DB Directory:
SQL000001

Container:
file1, file2

52

Old SMS Layout Explained (Not Recommended, FYI Only)

53

$ db2 "create tablespace testsms managed by system using ('testsms')"

DB20000I The SQL command completed successfully.

$ db2 "create table t1 (c1 integer) in testsms"

DB20000I The SQL command completed successfully.

$ ls -l /home/psustr/psustr/NODE0000/SQL00001/testsms/*

-rw------- 1 psustr pdxdb2 4096 Aug 18 10:46 /home/psustr/psustr/NODE0000/SQL00001/testsms/SQL00002.DAT

-rw------- 1 psustr pdxdb2 512 Aug 18 10:43 /home/psustr/psustr/NODE0000/SQL00001/testsms/SQLTAG.NAM

Storage Path:
/home/psustr

Instance Name:
psustr

Node:
NODE0000

DB Directory:
SQL000001

Tag +
containers

SMS Path:
testsms

53

SQLTAG.NAM – Container Tag

• A 512-byte “stamp” allowing Db2 to recognize its own table space
containers

• Prevents unintentional overwrites: an attempt to reuse a live container for
a table space results in SQL0294N “container in use”

• For DMS, the tag is located in the first extent of each container

• For SMS, the tag is located in a regular file named “SQLTAG.NAM”

• Some of the contents: database identifier (a.k.a. “seed”), table space ID,
container ID, “timestamp” of creation (“life LSN”), database name, instance
name, database path, tag checksum, …

• DO NOT DELETE ☺

54

54

SQLSPCS.1/.2 – Table Space Metadata

• Bootstrap information for all table spaces

• Located in two copies in the database home path

• Each table space has a pre-defined constant location
• This allows for concurrent writing => great concurrency
• However, the file may be (unexpectedly) large if there are “holes”

in table space IDs
• 256 KB per table space entry

• Some of the contents: table space ID, name, flags,
extent/prefetch size, backup and recovery info, size,
storage group association, container info, etc…

• ABSOLUTELY DO NOT DELETE ☺
55

SQLSPCS.1/2

Table Space 0

Table Space 1

<Deleted/Unused>

Table Space 3

<Deleted/Unused>

<Deleted/Unused>

Table Space 6

<etc…>

55

SQLSGF.1/.2 – Storage Group File

• Bootstrap information for storage groups and paths

• Located in two copies in the database home path

1. Header
• DBSTOGR eyecatcher, version, checksum, default storage group ID

2. Storage Group Information
• SG ID, name, version, parallelism, checksum, path assignments

3. Storage Path Information
• Path ID, path location, state (In Use, Drop Pending, Normal, …)

• DO NOT DARE TO DELETE ☺
56

Storage groups and paths are discussed in more detail later in this presentation.

56

Extracting Data/Metadata – Summary

Task Command Notes

Extract a page in hex (unformatted) db2dart <db> /DP

Extract and format a page db2dart <db> /DD Use /v (verbose) to also print page data

Extract an SMP db2dart <db> /DP You must know the SMP locations

Extract an EMP db2dart <db> /DEMP

Extract the Object Table db2dart <db> /DD /OI 65535 /v 65535 is the object ID for the Object Table

Extract and format an index page db2dart <db> /DI

Extract and format an XML data page db2dart <db> /DXA

Extract an XML data page in hex db2dart <db> /DXH

Display High Water Mark db2dart <db> /DHWM

57

57

Additional Stuff That IBM May Ask For

• For your reference only

• This data may be requested by IBM for problem determination

58

Task Command Notes

Extract a page descriptor from a local
buffer pool

db2pd -db <db> -dmpbufp
opt=p mode=s

FYI only. A page descriptor, a.k.a. BPD, is
internal metadata. Unformatted output.

Extract page contents from a local
buffer pool

db2pd -db <db> -dmpages FYI only. Internal. Unformatted output.

Extract a page from a global buffer pool
(pureScale ®)

db2pd -db <db> -cfdump
struct=gbp pgtype=page,dirent

FYI only. Internal. Unformatted output.

58

Session code:

Please fill out your session

evaluation before leaving!

Pavel Sustr
IBM Toronto Lab
psustr@ca.ibm.com

@pavel_sustr

D10

59

Please fill out your session

evaluation before leaving!

59

